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The Key ldea of Newton's Method

Let f : R" — R be a twice differentiable function
1
f(x +d) = f(x)+ VF(x) d + 5dTv2f(x)d + B(x,d) || d |
h li d) =
where dli)noﬁ(x, )=20
At ith iteration, use a quadratic function to approximate
. , , 1 ) ) )
f(x) = f(x')+ VFi(x")(x—x")+ E(X — x’)Tvzf(x’)(x —x")

x*1 = arg min f(x)

)
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Newton's Method

Start with x° € R". Having x' ,stop if Vf(x') =0
Else compute x*1 as follows:
@ Newton direction:  V2f(x')d' = ~Vf(x')
Have to solve a system of linear equations here!
@ Updating: x'*1 = x/ + d'

o Converge only when x? is close to x* enough.



Newton's Method with BAD Initial Point

f(

gi(

) =
X) = Fx) + /() ox — x1) 4+ 1) (x— )
gi(x) = F(1) +4(x — 1) + (x — 1)?
(x) = f(—1) +4(x + 1) + (x + 1)?
g1(—1) =g(1)=0
It can not converge to the optimal solution.
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Constrained Optimization Problem

Problem setting: Given function f, g;, i = 1,...,k and h;,
j=1,...,m, defined on a domain Q C R",

)
stt. gi(x) <0, Vi
hj(x) =0, Vj

where f(x) is called the objective function and g(x) <0, h(x) =0
are called constrains.



Example |

min  f(x) = 2x? + x5 + 3x2
s.t.  2x1 — 3x0 4+ 4x3 = 49
<sol>
L(x,B) =f(x)+ B(2x1 —3x2 +4x3 —49), e R
0

ai)qL(X,IB):O = 4X1+2ﬂ:0
0
Bl =0 = 20-35=0
0
Gl =0 = 65+45=0

2x1 —3xp+4x3—49=0= (3 =—-6
=>x1=3,x%=-9 x3=4
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Example Il

1+ a9 <4
m et <
r1, T9 > 0

Vf(x) = [221, 229
Vi(*) =[2,2]
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Definitions and Notation

o Feasible region:
F={xeQg(x) <0,h(x) =0}

g1(x) hy(x)
where g(x) = 5 and h(x) = :
8k(x) hm(x)
@ A solution of the optimization problem is a point x* € F such
that fix € F for which f(x) < f(x*) and x* is called a global
minimum.



Definitions and Notation

@ A point X € F is called a local minimum of the optimization
problem if 3¢ > 0 such that

f(x) > f(X), VYxeF and |[x—x||<e

@ At the solution x*, an inequality constraint g;(x) is said to be
active if gi(x*) = 0, otherwise it is called an inactive
constraint.

0 gi(x) <0< gi(x)+& =0, & >0 where & is called the slack
variable



Definitions and Notation

@ Remove an inactive constraint in an optimization problem will
NOT affect the optimal solution

o Very useful feature in SVM
o If 7 = R" then the problem is called unconstrained

minimization problem

o Least square problem is in this category

e SSVM formulation is in this category

e Difficult to find the global minimum without convexity
assumption
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The Most Important Concepts in
Optimization(minimization)

@ A point is said to be an optimal solution of a unconstrained
minimization if there exists no decent direction
= Vf(x*)=0

@ A point is said to be an optimal solution of a constrained

minimization if there exists no feasible decent direction
—> KKT conditions

e There might exist decent direction but move along this
direction will leave out the feasible region
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Minimum Principle

Let f : R” — R be a convex and continuously differentiable
function F C R" be the feasible region.

x* € arg mi]rg f(x) <= VIf(x")(x—x")>0 VxeF
xe

Example:
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Example Il

1+ a9 <4
m et <
r1, T9 > 0

Vf(x) = [221, 229
Vi(*) =[2,2]
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Linear Programming Problem

@ An optimization problem in which the objective function and
all constraints are linear functions is called a linear
programming problem

(LP) min  p'x
s.t. Ax < b
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Linear Programming Solver in MATLAB

X=LINPROG(f,A,b) attempts to solve the linear programming
problem:
min f'*x subject to: A*x <=b

X=LINPROG(f,A,b,Aeq,beq) solves the problem above while
additionally satisfying the equality constraints Aeq*x = beq.

X=LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and
upper bounds on the design variables, X, so that the solution
is in the range LB <= X <= UB.

Use empty matrices for LB and UB if no bounds exist. Set
LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf if X(i)
is unbounded above.
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Linear Programming Solver in MATLAB

X=LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point
to X0. This option is only available with the active-set al-
gorithm. The default interior point algorithm will ignore any
non-empty starting point.

You can type “help linprog” in MATLAB to get more information!
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L;-Approximation: mIiRp |Ax — b||1
xeR"

m
zlla = >_ |z
i=1
minl's min i s;
X,S :
k] Or X,S i=1
st. —s<Ax—b<s st. —s5; < Aix—b; <s; Vi
min [0 0 1 1] [X]
X,S S

[ T = 1)
—A — 2mx(n+m) s] — [-b
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Chebyshev Approximation: m}iRn | Ax — bl
x€R"

[zllo = 1g.«'ﬂgxmlzl-l

min vy
X?’y
st. —1ly<Ax—-b<1y

IN
|
O_D‘
=

S SR NN B
A -1 2mx(n+1) v
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Quadratic Programming Problem

@ If the objective function is convex quadratic while the
constraints are all linear then the problem is called convex
quadratic programming problem

(QP)  min %XTQX—I—pTX
s.t. Ax < b
Cx=d
L<x<U
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Quadratic Programming Solver in MATLAB

X=QUADPROG(H,f,A,b) attempts to solve the quadratic pro-
gramming problem:

min  0.5*x'*H*x+f'*x subject to: A*x <=b

X

X=QUADPROG(H,f,A,b,Aeq,beq) solves the problem
above while additionally satisfying the equality constraints
Aeq*x=beq.

X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB) defines a set of
lower and upper bounds on the design variables, X, so that
the solution is in the range LB <= X <= UB.

Use empty matrices for LB and UB if no bounds exist. Set
LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf if X(i)
is unbounded above.
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Quadratic Programming Solver in MATLAB

X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0) sets the starting
point to X0.

You can type “help quadprog” in MATLAB to get more
information!
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Standard Support Vector Machine

_ 1
min C(1T§A + leB) + EHW”%

W7b7§A7§B

(Aw +1b) + €4 > 1
(Bw +1b) — €5 < —1
§a>0,6g2>0
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Farkas' Lemma

For any matrix A € R™*" and any vector b € R”, either
Ax <0, b"x >0 has a solution

or
A'a=b, a>0 has a solution

but never both.

23 /40



Farkas' Lemma

Ax <0, b"x > 0 has a solution

b is NOT in the cone generated by A; and As

Solution Area

b

{z|b"z > 0} N {z|Az <(}750
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Farkas' Lemma

ATa = b, a > 0 has a solution
b is in the cone generated by A; and A,

{x|b"x >0} N {x|Ax <0} =0
{z[bT > 0} N {z|Az <0} =0
. , 4,
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Minimization Problem
Vs.

Kuhn-Tucker Stationary-point Problem

KTSP:

Find xe€Q, @a€R™ such that
VF(x)+a'Vg(x) =0
alg(x)=0
g(x) <0
a>0
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Lagrangian Function
L(x,a) = f(x) +a'g(x)

Let £(x,a) = f(x) +a'g(x) and a >0
o If f(x), g(x) are convex the L(x, «) is convex.
e For a fixed a > 0, if X € argmin{L(x, a)|x € R"}
then
‘%(a’;’ @) = VAR +a Veg(R) =0

@ Above result is a sufficient condition if £(x, a) is convex.

27 /40



KTSP with Equality Constraints?
(Assume h(x) = 0 are linear functions)

KTSP:

Find

h(x) =0 < h(x) <0and —h(x) <0

xeQ,aeRF By, € R™ such that

VF(R)+a ' Vg(x)+ (B+ — B-) Vh(x) =0
a'g(x) =0, (By) h(x) =0, ()T (=h(x)) =0
g(x) <0, h(x) =0

a>0, By, B->0
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KTSP with Equality Constraints

KTSP:

Find xeQ,acRf 3eR™ such that
Vf(x) +a'Vg(r) + BVh(x) =

(x)_O g(x) <0, h(x)—O
ZO

Qi

o Let 3=py—fB_and By, B- >0
then 3 is free variable

29 /40



Generalized Lagrangian Function
L(x,a,B) = f(x) +a’g(x)+ 8" h(x)

Let £(x,a, B) = f(x) +a'g(x) + BT h(x) and a > 0
e If f(x), g(x) are convex and h(x) is linear then L(x, a, 3) is

convex.
e For fixed a > 0, if x € argmin{L(x,a, )|x € R"}
then
oL
();Xa,ﬁ) = V(x)+ a'Vg(x)+BTVh(R) =0

@ Above result is a sufficient condition if £(x, a, () is convex.
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Lagrangian Dual Problem

in L
max min (x,a, )

s.t. a>0
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Lagrangian Dual Problem

max min L(x,a, )

a,8 xeQ
s.t. a>0
()
max  0(«, )
a’/B
s.t. a>0

where 0(a, B) = ;gg L(x,a, )
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Weak Duality Theorem

Let X € Q be a feasible solution of the primal problem and («, 3) a
feasible sulution of the dual problem. then f(x) > 0(«, 53)

0(c, B) = inf L(x, e, 8) < L(X, a, B)
xeQ

Corollary:

sup{0(c, B)la = 0} <inf{f(x)|g(x) <0, h(x) =0}
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Weak Duality Theorem

If f(x*) =0(c*, 8*) where o* > 0 and g(x*) <0, h(x*) =0
,then x* and (a*, 8*) solve the primal and dual problem
respectively. In this case,

0<algx)<o0
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Saddle Point of Lagrangian

Let x* € Q,a* > 0, B* € R™ satisfying
L(x" 0, ) < L(x*, 0%, B7) < L(x,a", 8) , ¥x €Q, a >0

Then (x*, a*, 8*) is called The saddle point of the Lagrangian
function
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Saddle Point of f(x,y) = x2 —y?

R
é@&.\\ﬁ»\\\
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Dual Problem of Linear Program

Primal LP min p'x
x€R"

subjectto Ax>b, x>0

Dual LP max b o
aERM

subject to Ala < p,a>0

@ All duality theorems hold and work perfectly!
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Lagrangian Function of Primal LP
L(x,a) =p'x+af (b— Ax) + a; (—x)

max min L(x, a1, a2)
ag,a>0 xeERP

)

max p'x+af (b— Ax) + aj (—x)
ay,02>0

subject to p— ATal —ar =0
(VxL(x,a1,0a2) = 0)
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Application of LP Duality
LSQ — NormalEquation Always Has a Solution

For any matrix A € R™" and any vector b € R™
consider min ||Ax — b||3
x€R"

x* € argmin{||Ax — b|j3} & ATAx* = ATb

Claim : AT Ax = AT b always has a solution.
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Dual Problem of Strictly Convex Quadratic Program

Primal QP

: I+ T
LI
s.t. Ax < b

With strictlyconvex assumption, we have

Dual QP

1
max —5( T+a"AQ Y ATa+p)—a'b

s.t. a>0
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